Minimum Bayes Risk Combination of Translation Hypotheses from Alternative Morphological Decompositions
نویسندگان
چکیده
We describe a simple strategy to achieve translation performance improvements by combining output from identical statistical machine translation systems trained on alternative morphological decompositions of the source language. Combination is done by means of Minimum Bayes Risk decoding over a shared Nbest list. When translating into English from two highly inflected languages such as Arabic and Finnish we obtain significant improvements over simply selecting the best morphological decomposition.
منابع مشابه
Applying Morphological Decompositions to Statistical Machine Translation
This paper describes the Aalto submission for the German-to-English and the Czechto-English translation tasks of the ACL 2010 Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR. Statistical machine translation has focused on using words, and longer phrases constructed from words, as tokens in the system. In contrast, we apply different morphological decompositions of words ...
متن کاملApplying morphological decomposition to statistical machine translation
This paper describes the Aalto submission for the German-to-English and the Czechto-English translation tasks of the ACL 2010 Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR. Statistical machine translation has focused on using words, and longer phrases constructed from words, as tokens in the system. In contrast, we apply different morphological decompositions of words ...
متن کاملMixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems
We present Mixture Model-based Minimum Bayes Risk (MMMBR) decoding, an approach that makes use of multiple SMT systems to improve translation accuracy. Unlike existing MBR decoding methods defined on the basis of single SMT systems, an MMMBR decoder reranks translation outputs in the combined search space of multiple systems using the MBR decision rule and a mixture distribution of component SM...
متن کاملNTT-UT Statistical Machine Translation in NTCIR-9 PatentMT
This paper describes details of the NTT-UT system in NTCIR9 PatentMT task. One of its key technology is system combination; the final translation hypotheses are chosen from n-bests by different SMT systems in a Minimum Bayes Risk (MBR) manner. Each SMT system includes different technology: syntactic pre-ordering, forest-to-string translation, and using external resources for domain adaptation a...
متن کاملGeneralized Minimum Bayes Risk System Combination
Minimum Bayes Risk (MBR) has been used as a decision rule for both singlesystem decoding and system combination in machine translation. For system combination, we argue that common MBR implementations are actually not correct, since probabilities in the hypothesis space cannot be reliably estimated. These implementations achieve the effect of consensus decoding (which may be beneficial in its o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009